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Coupling of Degenerate Modes on Curved
Dielectric Slab Sections and Application

to Directional Couplers

MOHAMAD DEEB ABOUZAHRA, ~MBER, lEEE, AND LEONARD LEWIN, SENIOR &lllMBER, lEI?.E

Abstraet-Approxirnate expressions are derived for the eoupiing of

degenerate modes on two curved dielectric stab sections. From this mmfy-

sis a directional eoupier is designed in which a fiite iength ampler is

joined to terminaf iengths via curved structure seetions. The reverse

conpfing (dfrectivity) and refiectiou as weU as corrections to the eoupfing

len~ are studied. The propagation characteristics and the reflection

coefficient due to ampffng, as weii as the eorrest 3-dB eoupfing length are

cafcufat@ numericafiy. Second order effee& that determine the band-

width as weff as the eoupiing, have been considered and found to he very

Substautiaf.

In the exarnplea considered the reflection and diredivity due to the

eoupffng process were both more than 35 dB do- and the 3-dB outputs

were exaetiy in quadrature, correct to the ffit order of approximation.

I. INTRODUCTION

I N THIS PAPER we consider the coupling of power

between the guided modes of two curved dielectric slab

sections. We assume single-mode propagation and a loss-

less medium. The curved sections will be considered to be

of parabolic form and the radii of curvature of the bends

must be sufficiently large so that the radiation losses [1]

are negligible.

Before starting the analysis we discuss briefly several

other investigations on similar coupling problems. The

problem of coupling of degenerate modes as well as nearly

degenerate and nondegenerate modes on two parallel di-

electric guides has been studied extensively by several

authors [1], [2], [3]. The problem of two modes with

arbitrary phase velocities on inclined straight waveguides

has been discussed, using a computer technique, by Yajima

[4] and by Burns and Milton [5]. By neglecting the radia-

tion loss, Matsuhara and Watanbe [6] analyzed the cou-

pling between two modes of different phase velocities

propagating on adjacent curved dielectric slab wave-

guides. Because of the complexity of the field-amplitude

equation, these equations were solved numerically. A less

general case of two coupled slab waveguides symmetri-

cally located about a plane and propagating modes with

equal phase velocity has been discussed recently by

Anderson [7], who derived expressions for the modes that
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propagate on nonparallel coupled waveguides in terms of

distributed phase and coupling functions. However, in his

analysis Anderson did not derive the end effect nor the

reflection coefficient due to coupling in the curved sec-

tions.

In the present paper we consider the coupling proble n

of a finite length coupler joined to loads via curved

structure sections. Transmission line analofg will be used

to analyze the coupling problem between two identical

dielectric slabs symmetrically located about a plane and

propagating degenerate modes. From this analysis closed-

form expressions for the amplitudes of the modes that

propagate on a dielectric slab directional coupler are

derived. It is found that the modes are accurately in

quadrature. From this analysis the reverse-coupling (direc-

tivity) and reflection, as well as corrections to the coupling

length are studied. The reflection coefficient due to cou-

pling as well as the correct 3-dB coupling length are

calculated, numerically. Second-order effects that de-

termine the bandwidth as well as the coupling, have been

considered and found to be substantial. In the examples

considered the reflection coefficient and the directivity

were both more than 35 dB down, and the 3-dB outputs

were exactly in quadrature.

II. ANALYSIS

A. The Transmission Line Equations

Figs. 1 and 2 illustrate the geometries used in the

description of the dielectric directional coupler, It consists

of one linear middle section joined to two curved terminal

sections. Small curvature is assumed so that radiation due

to bending is not significant. The waveguides are assumed

to be identical, that is to have the same relative dielectric

constant c, and to be of equal width a. The two slabs are

separated by a distance do and sandwiched between two

perfectly conducting planes. The propagation constants

along both lines in isolation are taken to be identical and

equal to &. With mode El launched on the lower wave-

guide at z= – co, it is required to find the power coupled

to the mode Ez in the upper waveguide as a function of z.

In practical couplers, the termination is at about one

curvature radius distant, but in the present analysis the
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; tions decompose to

h =:J+QV
I-- O+do+ a-+

dV
Fig. 1. Transverse section of the coupler.

— = –ju(L+-L12)l
dz

do
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— = –ju(L–L’12)i.
dz

t~(z)

4 On eliminating V and v in (6) we obtain

I
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Fig. 2. Dielectric directional coupler.

Similar equations can be obtained for V and o.

If the single line, in isolation, supports a single mode
LINE 2

ii=i-::

with propagation constant /3., equal to a ~, then the

coupled system will support two types of modes, name!y

symmetrical and antisymmetrical, with two different prop-
il

agation constants /3 + and B., occurring in (7) and (0

Fig. 3. Representation of the coupling region betwen the two coupled and written, respectively, as

lines.

()
p:=p: l+%

input and the output will be taken, for reasons of conveni-

ence, at z = – co and z = 00, respectively. The additional

coupling due to this extra length is completely negligible.

In the analysis we consider the transmission line equa-

tions in which I, V and i, v are analogous to the even and

odd field modes of the guides and where il, * are used to

represent the coupled fields along each guide as shown in

Fig. 3. For such a transmission line standard equations

exist. The analysis is undertaken for the three sections.

Because of the symmetry of the problem the mutual

coupling coefficients L 12, L21 will be equal, as will C12,

.21 and hence the coupled equations of this symmetrical

system beeome

ail avl 1 a
—.
az – CT –5G2~(vJ2) (1)

ai2
—=– C!3+123U2-V1)
az

(2)

aO1 i3i1 iliz

az
—= —LX– L12Z

av2 “
-La’2

ail
—= ——
a2 at “%

(3)

(4)

where L and C represent the self-coupling coefficients and

L 12and C12 represent the mutual coupling coefficients.

Assuming eJ”t time dependence and setting

V= V1+V* V= VI— V*

Z=i1+i2 i=il —i2 (5)

where 1 and V stand for the symmetrical modes, i and v

stand for the antisymmetrical modes, the coupled equa-

@=d1+%w9 (9)

Because of coupling between the two waveguides, the

propagation constants fi+ and ~_ of the double wave-

guide system will be given by

D+=Po+@ (lo-a)

13- =/30-AB (lO-b)

where A/3 is the shift in the propagation constant due tlo

coupling for both the symmetrical and the antisymmetri-

cal modes, and is equal to [2], [3]

Afi =
p2he-hd0

()

(11)

&Jc:(Er– 1) ; + +

where

h decay constant of the field outside the dielectric;

P transverse wave number inside the dielectric;

do separation between the two guides.

By means of (lO-a) and (lo-b) the mutual coupling coeffi-

cients are evaluated, correct to the first order of the small

quantity A~, and found to be

L ~z_=2g
L

C,*=O. (12)

By substituting (12) in (7) and (8) we obtain the field

differential equations over the three sections of Fig. 2. me
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field differential equation arising from the straight section

of the coupled waveguide system is easily solvable. How-

ever, the resulting field differential equations for the two

curved sections do not have an exact closed form solution

because of the variable coupling. Hence a perturbation

method [9] is used to get an approximate solution which is

correct to the first order of Afl, the wavenumber dif-

ference due to coupling.

B. Curved Sections

The waveguides of these sections, Sections 1 and 3 in

Fig. 2 are each assumed to be of parabolic form and are

separated by a distance d(z) given by

d(z)= dO+2cz2

where c is the curvature parameter, half the inverse of the

radius of curvature of the curved sections,

The field amplitude differential equations of the sym-

metrical as well as the antisymmetrical modes are found

to be

d21
— +/3;I= –21~oA~e-2hcz2
dz2

d2V
— +p;v= –2V@oA@e-2hcz2
dz2

dzi
— +~~i=2i&Afle–2h cz2
dzz

d2v
— +~&=2v/30A~e-2h cz2.
dzz ,

(13)

The z-dependent exponential term that appears on the

right-hand side of (13) is because of the variable coupling

along the curved sections. This term represents a small

perturbation of the unperturbed equation

d21
— +/3:I=o<
dzz

We will assume that the solution of the original per-

turbed equation differs only slightly from the correspond-

ing homogeneous solution e‘~~oz. In this spirit we assume

that the sought solution has the form

I(z)= e-J@0z+(2/30A/3 )@1(z)+(2&A~)2@2 (z)+ . . .

where +1, +2,. . . represent the correction to be added to

the unperturbed solution. Now, if 2f10A~ is small, com-

pared to /3~, we can neglect the higher powers of A~ and
represent the overall solution approximately as

l(z)= e-~flOz+ (2& A~)@1(z).

When this result is substituted into the perturbed differen-

tial equation, and upon retaining the terms that are within

the first order in A~, @l(z) can be determined.

C. Straight Section

Along this middle section of the coupler, the coupling is

not variable and the field amplitude differential equations

resulting from this section are given by

d21
— +fl;I=O
dz 2

d2V
—+p:v=o
dz2

fl +~~i=O
dz2

d2v
— +p:o=o.
dz2

D. Solutions

(14)

In our analysis we will assume that Section 1 is fed by a

unit incident wave at z = – m. Using the perturbation

technique to get an approximate solution, correct to the

order of A~, for the symmetric and antisymmetric modes

of the curved sections and imposing the boundary condi-

tions on the junctions, that is i, v, 1, and V are matched at

z = O and z = 1 of Fig. 2 we obtain the following.

E. Section 1

JI= e ‘j$oz _jA~e ‘j$.z z e –2hcz2dz

—w

J
z

+jA/3ej~0z e –2j$Oz–2hcz2 dz

o

_j+e -zjfl+{e~hz +O((A~)2)

J
z

i = e–J@oz +jApe–j~oz e–2hcz2 dz

—m

J
_jAfie&z ‘e–2j13,z-2hcz’ dz

o

(15)

+j+&2jB-’@o’ + fJ((A~)2) (16)

where 1 is the length of the straight section. and Y is given

by

q=Ap~*e-2jfl,z-2hcz~z

o

r[=A ~
2

8hc
e–6%@C- “_ J3aw & . (17)

‘G ( )]

Daw (x) is Dawson’s integral and is defined as

Daw (x)=e-x’~’et%.
o

The four terms on the right-hand side of (15) et seq. are

identified, respectively, as the incident wave, the effect of

the curvature on the transmitted wave, the back-coupled

wave produced in Section 1, and the back-coupled wave

produced in Section 3. Their coefficients come from the

matching requirements at z = O and 1.

The integral is well tabulated [10] and has the following

asymptotic expansion, for real x:

1

[

13 1Daw(x)-Z l+m+m+~+-.. , X>2
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By means of (5), that is by addition and subtraction of the

previous results, we obtain

i,= ~-j%z _ @MZ-20sin(2A~l) (18)

~

z
iz = –jA/3e-JR”z

J
e–2hcz2dz+jA~e~~”z ‘e-2j$”z–2hcz2 dz

—co o

–j~e~p”(Z-21)cos(2 A/31). (19)

F. Section 2

The symmetrical and antisymmetrical modes of the

coupled system are given by

1=(1 —j+)e–j~+z _j*~–2~6+le~fl+Z (20)

i= (1 +jo)e–~p+z +jt//e-2~P-’e~z-z. (21)

By addition and subtraction of the coupled modes the

actual field amplitudes are found to be governed by

il = e-~f10z[cos(A/3z) – +sin(M3z) ]

+~e~@”(z-2%in[A/ 3(z-21)] (22)

i2 = –je-~floz[ sin(A~z) + +cos(ABz) ]

–j+ej~o(z -21)cos[ A~(z – 2z) ] (23)

where G is given by

~=Afi~we-zhCZ2 dz =A~ ~~/2 .
m

(24)
o

G. Section 3

The resulting field expressions of the symmetric and

antisymmetric mode along the third curved section, which

theoretically extends to z= m, are given by

[J
1=(1 –j@)e--’flO(Z)e)Jp+l+l 1 –jAj3 ‘-le-2hcz2 dz

o I
J~jA~e–J~+leJ&(z-z)‘– Ze–2j130z-2hcz2 dz (25)

w

[
i= (1 +j$)e-~p”(z-t)e-~p-r 1 +jA~~z-’e-2hcz2 dz

w 1
(–jAp_e-J~-leJ@dz –l) z ‘Ie–2j/30z-2hcz’ & (26)

~w

from which the actual fields are evaluated

be

il = e-jflOz[cos(A@) – @sin( A8~) ]

and found to

_ e-jbozApsin(A~l)~-*e-2hcz2dz

+ eJfi~(Z-zf)A~sfi( A~l)~z-[e-zjfloZ -2hCZ2dz (27)

i2 = –je-~floz[ sin(A~/) + +coT(A/3~) ]

_~@-J~ozA~Co~(Afll )

J

z—l
x e-2h”z’ dz +jeJ@O(z-2f)A/3 cos(Aj31)

o

J

z-l
x

e–2jfiOz-2hcz2 dz, (28)
CO

1.099

The first interesting result that attracts attention in

these results, (18), (19), (22), (23), (27), and (28), is that

despite all approximations the coupled outputs, or more

generally the fields of the two lines, are exactly in quadra-

ture all over the three sections. Moreover, the first term on

the right-hand side of (18) represents the unit incident

field in line 1 while the second term represents the reflec-

tion coefficient due to coupling. The reflection coefficient

can be written as

R =#e-2@0[sin(Afll). (29)

On the other hand, i2 of (19) does not vanish at z = – co,

and hence zero reverse coupling is not achieved. On the

contrary, the field of line 2 will retain a finite value, seen

in (19), and given by

D(z= –
{

~) ~j Ap~*e–2jPOz–2hcz2 dz

0

which upon carrying out the integration reduces to

D(z:= – co) =j{~” –+e-2~P0’cos(2APl)} (:31)

where ~* is the conjugate of ~, as given in (17). Equation

(31) gives the value of the reverse coupling or directivity

of the coupler. The first two terms on the right-hand side

of (19) describe the effect of internal coupling in the initial

curved section. The magnitudes of the actual fields il and

i2, in the third section and at z = m, are obtained from

(27) and (28) and found to be equal to

\il(co)l =cos(A~/) -2@sin(A@) (:32)

li2(co)l=sin(A@ )+2~cos(A131). (:33)

These equations will be used to evaluate the coupling

length of the straight section, the length corrections due to

the end effect of the curved sections and hence the cor-

rected length of the coupler, as will be seen in the next

section.

III. CWPLING LENGTH CALCULATION OF A 3-dB

COUPLER

As is well known, the coupled system supports two

modes of two different phase velocities, and hence they

interfere with each other constructively or destructively.

As a result of this interference power will be transferred

from one line to the other continuously. The beat length

over which complete power transfer takes place is given

by

(34)

In a distance ~ L the amplitudes in the two lines be-

come proportional to cos (T/4) and sin (w/4), i.e., half

the power is in each line. The (uncorrected) length for a

3-dB coupler is accordingly
m-

‘3dB=~” (35)
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Fig. 4. Equivalent description for the 3-dB coupler showing the end
effect of the curved sections.

By imposing the design requirement on ii(z) and i2(z)

of Section 3, at z = co, which is equal amplitudes of il( w)

and iz(co) in order to achieve a 3-dB coupler, we obtain

the length corrections due to the end effect of the curved

section, Using (32) and (33) and applying the condition of

equal field amplitudes at z = co we get

cos(A~l) – 2@sin(A~l) = sin(A/31) +2r#Jcos(A~l)

which reduces to

correct to the first order of the small quantity A& But the

length 1 of the straight section can be expressed as

l= L3dB– Lc (37)

where L~ ~B is the uncorrected 3-dB length of the coupler

and L= is the length correction due to the curved sections.

Fig. 4 illustrates an equivalent description for the 3-dB

coupler showing the end effect of the curved sections. By

substituting (35) and (37) in (36) we obtain

#
LC=N+N’=3=-

A/3 ~
(38)

where N and N’ represent the correction at the two ends

of the coupler. Because of the symmetry of the coupler N

and 81’ are equal.

IV. NumwucAL EXAMPLE

As a numerical example of these results, consider the

design of a 3-dB directional coupler exactly similar to that

in Fig. 2. The excited guide is assumed to support a TE

even mode whose propagation characteristics are governed

by [8]

hz+pz=k:(cr– 1)

tan(~pa) = ?z/p. (39)

For a teflon guide of width 2.54 mm and c,= 2.2 operat-
ing at a frequency of 94 GHz the values of h, p, and & are
found to be, respectively, equal to 19,6, 8.98, and 27.8

cm-’. For c= 0.2 (corresponding to a 25-mm radius of

curvature) and a spacing of do= 1 mm the 3-dB corrected

length is found to be 7.5 cm. Because we considered this

length excessive we reduced the spacing to 0.5 mm which

gives a corrected length equal to 2.4 cm, a more suitable

value for the coupler length. The effect of curvature on

the corrected length of the coupler is found to be small. In

Fig. 5 we present the dependence of the output field

amplitude, at z = co and on both lines of Section 3, on

1
(11 d, = 1.5mm, I =21cm
(2) 11: l.Omm, II ,7.4~m

I 25 (3) 11= 0.5mm, 1, =24cm

a = 2,54mm
c=02 cm-1

8nn ‘ .-. c,= 2 2

~075
— t

~
70 8Cl 90

f (G Hz)

Fig. 5. Frequency depeudersceof coupling for 3 dB at 94 GHz.

025

t 1
3

0

m
‘u

-3

-9

f(GHz)

Fig. 6. Effect of line width and dielectric constant on coupfing,
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-L—~
0.05 0. I 015 0.2
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Fig. 7. Bandwidth versusspacing,

frequency. The actual fields are equal at the central

frequency & and have a value of 1/ fi so that the sum of

the squares is equal to 1. Below and beyond j=, the squares
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-3
Xlo rJ.254mm

~ .0.2 cm-l

“~
f (GHz)

Fig. 8. Reflection coefficient versusfrequency.

I I I I I
70 80 90 100 110

f (GHz)

Fig. 9, Directivity versusfrequency.

of the fields, Iil(co)l 2 and Ii2(co)l 2, still add to 1 and this

is to be expected because of the conservation of energy. In

addition, we can see also the dependence of the flatness of

the coupler response on frequency as well as the effect of

8pacing on the flatness of the coupler response. The

bandwidth of the coupler has been found to be inversely

proportional to the spacing. This relation is clearly il-

lustrated in Figs. 6 and 7. In the same way other second

order effects have been examined and were found to

affect the bandwidth of the coupler so that the same effect
of 0,5-mm spacing and e,= 2.2 could be achieved by

1101

0.8-mm spacing and e,= 1.8 with 1=2.5 cm in both cases.

Moreover, it seems to be the case that the same effect

could be achieved also by varying the breadth of the lime

as well as the spacing, keeping e, and I at fixed values.

Finally Figs. 8 and 9 show the dependence of the magni-

tudes of the reflection coefficient and directivity on

frequency.

V. CONCLUSIONS

Approximate expressions have been derived for the

coupling of degenerate modes on curved, single-mode

dielectric slab waveguides. As illustrated by the example,

the curvature has negligible effect on the reflection coeffi-

cient and the directivity of the coupler. Moreover, it has

been shown that despite all approximations in the calcula-

tions, the fields on both lines are always in quadrature.

We showed also that there are substantial second-order

effects which affect the bandwidth of the coupler, and, at

least in part, increasing the coupling seems to increase the

bandwidth. Finally, we found that the same effect on the

bandwidth of tight coupling at 0.5-mm spacing can also

be achieved by decreasing the value of c, and increasirlg

the
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