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Coupling of Degenerate Modes on Curved
Dielectric Slab Sections and Application
to Directional Couplers
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Abstract— Approximate expressions are derived for the coupling of
degenerate modes on two curved dielectric slab sections. From this analy-
sis a directional coupler is designed in which a finite length coupler is
joined to terminal lengths via curved structure sections. The reverse
coupling (directivity) and reflection, as well as corrections to the coupling
length, are studied. The propagation characteristics and the reflection
coefficient due to coupling, as well as the correct 3-dB coupling length are
calculated, numerically. Second order effects, that determine the band-
width as well as the coupling, have been considered and found to be very
substantial,

In the examples considered the reflection and directivity due to the
coupling process were both more than 35 dB down, and the 3-dB outputs
were exactly in quadrature, correct to the first order of approximation.

I. INTRODUCTION

N THIS PAPER we consider the coupling of power

between the guided modes of two curved dielectric slab
sections. We assume single-mode propagation and a loss-
less medium. The curved sections will be considered to be
of parabolic form and the radii of curvature of the bends
must be sufficiently large so that the radiation losses [1]
are negligible.

Before starting the analysis we discuss briefly several
other investigations on similar coupling problems. The
problem of coupling of degenerate modes as well as nearly
degenerate and nondegenerate modes on two parallel di-
electric guides has been studied extensively by several
authors [1], [2], [3]. The problem of two modes with
arbitrary phase velocities on inclined straight waveguides
has been discussed, using a computer technique, by Yajima
[4] and by Burns and Milton [5]. By neglecting the radia-
tion loss, Matsuhara and Watanbe [6] analyzed the cou-
pling between two modes of different phase velocities
propagating on adjacent curved dielectric slab wave-
guides. Because of the complexity of the field-amplitude
equation, these equations were solved numerically. A less
general case of two coupled slab waveguides symmetri-
cally located about a plane and propagating modes with
equal phase velocity has been discussed recently by
Anderson [7], who derived expressions for the modes that
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propagate on nonparallel coupled waveguides in terms of
distributed phase and coupling functions. However, in his
analysis Anderson did not derive the end effect nor the
reflection coefficient due to coupling in the curved sec-
tions.

In the present paper we consider the coupling proble n
of a finite length coupler joined to loads via curved
structure sections. Transmission line analogy will be used
to analyze the coupling problem between two identical
dielectric slabs symmetrically located about a plane and
propagating degenerate modes. From this analysis closed-
form expressions for the amplitudes of the modes that
propagate on a dielectric slab directional coupler are
derived. It is found that the modes are accurately in
quadrature. From this analysis the reverse-coupling (direc-
tivity) and reflection, as well as corrections to the coupling
length are studied. The reflection coefficient due to cou-
pling as well as the correct 3-dB coupling length are
calculated, numerically. Second-order effects that de-
termine the bandwidth as well as the coupling, have been
considered and found to be substantial. In the examples
considered the reflection coefficient and the directivity
were both more than 35 dB down, and the 3-dB outputs
were exactly in quadrature.

II. ANALYSIS

A. The Transmission Line Equations

Figs. 1 and 2 illustrate the geometries used in the
description of the dielectric directional coupler. It consists
of one linear middle section joined to two curved terminal
sections. Small curvature is assumed so that radiation due
to bending is not significant. The waveguides are assumed
to be identical, that is to have the same relative dielectric
constant €, and to be of equal width a. The two slabs are
separated by a distance d, and sandwiched between two
perfectly conducting planes. The propagation constants
along both lines in isolation are taken to be identical and
equal to B,. With mode F, launched on the lower wave-
guide at z= — o0, it is required to find the power coupled
to the mode E, in the upper waveguide as a function of z.
In practical couplers, the termination is at about one
curvature radius distant, but in the present analysis the
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Fig. 1. Transverse section of the coupler.
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Fig. 2. Dielectric directional coupler.
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Fig. 3. Representation of the coupling region betwen the two coupled
lines.

input and the output will be taken, for reasons of conveni-
ence, at z= —oco and z=o0, respectively. The additional
coupling due to this extra length is completely negligible.

In the analysis we consider the transmission line equa-
tions in which 7, ¥ and i, v are analogous to the even and
odd field modes of the guides and where i, , are used to
represent the coupled fields along each guide as shown in
Fig. 3. For such a transmission line standard equations
exist. The analysis is undertaken for the three sections.
Because of the symmetry of the problem the mutual
coupling coefficients L,,, L,, will be equal, as will C},,
C,, and hence the coupled equations of this symmetrical
system become

%=—C—a£l—%cu§t-(vl—vz) ®
%=—L%';1—L,2%3 ©)
Sy 82,0 @

where L and C represent the self-coupling coefficients and
L,, and C,, represent the mutual coupling coefficients.
Assuming e/’ time dependence and setting
V=0v,+1v,

I=il+i2

V=0,—0,
)

where I and V stand for the symmetrical modes, i and o
stand for the antisymmetrical modes, the coupled equa-

i=il’i2
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tions decompose to
dl

= —joCV
% =—jo(C+Cp)v
%ZK= —jow(L+ L)1
% = —jw(L—Ly)i. 6
On eliminating ¥ and v in (6) we obtain
o1 L) o
Z—:§=—w2LC(l+—%2—)(l——LLﬁ)i. ®)

Similar equations can be obtained for ¥ and v.

If the single line, in isolation, supports a single mode
with propagation constant 8,, equal to wVLC, then the
coupled system will support two types of modes, namely
symmetrical and antisymmetrical, with two different prop-
agation constants 8, and B_, occurring in (7) and (8),
and written, respectively, as

p2=p3(1+2)

p=gi1+ 2 )(1-2) ®

Because of coupling between the two waveguides, the
propagation constants 8, and B_ of the double wave-
guide system will be given by

B,=By+AB
B_=B,—AB (10-b)

where AB is the shift in the propagation constant due to
coupling for both the symmetrical and the antisymmetri-
cal modes, and is equal to [2], [3]

(10-a)

2 h —~hdy
A= ——F——— (11)
a
Bokj(e,— 1)('5 + Z)
where
h  decay constant of the field outside the dielectric;
p transverse wave number inside the dielectric;
d, separation between the two guides.

By means of (10-a) and (10-b) the mutual coupling coeffi-
cients are evaluated, correct to the first order of the small
quantity AB, and found to be
Lo _,48
L Bo
C,=0. (12)
By substituting (12) in (7) and (8) we obtain the field
differential equations over the three sections of Fig. 2. The
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field differential equation arising from the straight section
of the coupled waveguide system is easily solvable. How-
ever, the resulting field differential equations for the two
curved sections do not have an exact closed form solution
because of the variable coupling. Hence a perturbation
method [9] is used to get an approximate solution which is
correct to the first order of AB, the wavenumber dif-
ference due to coupling.

B. Curved Sections

The waveguides of these sections, Sections 1 and 3 in
Fig. 2 are each assumed to be of parabolic form and are
separated by a distance d(z) given by

d(z)=dy+2cz?

where c is the curvature parameter, half the inverse of the
radius of curvature of the curved sections.

The field amplitude differential equations of the sym-
metrical as well as the antisymmetrical modes are found
to be

2
ié +B2I= =2 1B, A e

2
‘2 ~ + B3V = —2VB,ABe™ "
d2 —2hcz?
- — +BEi=2iB,ABe

d2

(13)

The z-dependent exponential term that appears on the
right-hand side of (13) is because of the variable coupling
along the curved sections. This term represents a small
perturbation of the unperturbed equation

d?I
— +BZI=0.
dz? 0

We will assume that the solution of the original per-
turbed equation differs only slightly from the correspond-
ing homogeneous solution e /%%, In this spirit we assume
that the sought solution has the form

1(z)=e 7P+ (2B,AB) b1 (2) + (2BoAB)Y by (2) + - - -

where ¢,, ¢,,- -+ represent the correction to be added to
the unperturbed solution. Now, if 28,A8 is small, com-
pared to ¢, we can neglect the higher powers of A and
represent the overall solution approximately as

I(z)=e™P+(28,AB)$,(2).

When this result is substituted into the perturbed differen-
tial equation, and upon retaining the terms that are within
the first order in AB, ¢,(z) can be determined.

—_— ,800 =208,ABe™ 2k,
dz? ’

C. Straight Section

Along this middle section of the coupler, the coupling is
not variable and the field amplitude differential equations
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resulting from this section are given by

d’l
3 +BLI=0
dxv 2
;;‘2—+,3+V=0
21 2.
;’5+B_l=0
2
‘;Z +B20=0. (14)

D. Solutions

In our analysis we will assume that Section 1 is fed by a
unit incident wave at z= —oco. Using the perturbation
technique to get an approximate solution, correct to the
order of AB, for the symmetric and antisymmetric modes
of the curved sections and imposing the boundary condi-
tions on the junctions, that is i, v, I, and ¥ are matched at
z=0 and z=/ of Fig. 2 we obtain the following.

E. Section 1
I=e /P —jABe —jﬂ"zfz e 27y

- oC

ket [ ot g
0

—jpe ~2IB+lgiBoz +0((A,8)2) (15)
ime IR japeier [T em2her’ gy
—®
—jABePoz f Fe—2iBoi—2hes? g,
0
+jbe 2Pl Por 1 0((AB)?) (16)

where / is the length of the straight section and ¥ is given
by

¢=Aﬁf°°e-2jﬁoz-2hcz2dz
0

T
8hc
Daw (x) is Dawson’s integral and is defined as

Daw (x)=e_"2fxe’2dt.
(o]

=A e B3/ 2he j72_— Daw( Ao )} (17)

K

The four terms on the right-hand side of (15) et seq. are
identified, respectively, as the incident wave, the effect of
the curvature on the transmitted wave, the back-coupled
wave produced in Section 1, and the back-coupled wave
produced in Section 3. Their coefficients come from the
matching requirements at z=0 and /.

The integral is well tabulated [10] and has the following
asymptotic expansion, for real x:

R LI _3~ 15
2x%  4x*

1
Daw (x)~§—; 1 "

'J, x>2
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By means of (5), that is by addition and subtraction of the
previous results, we obtain

iy =e P07 — e Bolz=2D5in(2ABI) (18)
iy= —jABe P f T ey 4 jABe e f e
—w (]

—jpe Poz=20c05(2A81). (19)

F. Section 2

The symmetrical and antisymmetrical modes of the
coupled system are given by

I= (1 _j¢)e—j/3+z _j‘pe—2jﬁ+lejﬁ+z (20)
i=(1+jp)e B+*+ jyye=2/B-lg/B-z, (21)

By addition and subtraction of the coupled modes the
actual field amplitudes are found to be governed by

iy=e/P*[ cos(ABz) —sin(ABz) ]

+yeBotz=2Dsin[ AB(z—21)] (22)
iy=—je /o[ sin(ABz)+pcos(ABz) ]
— jpeBoz=2Dcos[ AB(z—21)] (23)
where ¢ is given by
w 1/2
¢=AB e—2hczzdz__.AB m . (24)
j(; V8he
G. Section 3

The resulting field expressions of the symmetric and
antisymmetric mode along the third curved section, which
theoretically extends to z= o0, are given by

I= (1 _j¢)e_lﬂo(2—l)e—jl3+ll: 1 —jA,BfZ_—Ie_Zh”z dz
0

4

+jABe gD [T g2 =2ne gy (25)
0
. ) -1 |
i=(1 +j¢)e—fﬁo(z_1)e—;/3_1[ 1 +jA,8fz e~ 2hez? g,
L o
~ jABe -l el [*Tgm2me2ne gy (26)
o0

from which the actual fields are evaluated and found to
be

iy=e"Po*[cos(ABI)—¢sin(ABI) ]
—e o Bsin(ABY) [ Pl 2hes? g
0

+eo=200Bsin(ApI) [ g 2iBer=2he gy (27)
> 0]

iy= —je o[ sin(ABI) +pcos(ABI) ]
—je /Bo?ABcos(ABI)
% fz_le—zhczz dz +jejﬁo(2—21)ABcos(Aﬁl)

—2jBoz—2hcz? dz. (28)

0

z—1
X e
®©
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The first interesting result that attracts attention in
these results, (18), (19), (22), (23), (27), and (28), is that
despite all approximations the coupled outputs, or more
generally the fields of the two lines, are exactly in quadra-
ture all over the three sections. Moreover, the first term on
the right-hand side of (18) represents the unit incident
field in line 1 while the second term represents the reflec-
tion coefficient due to coupling. The reflection coefficient
can be written as

R=ye 2Pl sin(ABI). (29)

On the other hand, i, of (19) does not vanish at z= — oo,
and hence zero reverse coupling is not achieved. On the
contrary, the field of line 2 will retain a finite value, seen
in (19), and given by

o

~ e~ 2ol cos(2AB1) } (30)

which upon carrying out the integration reduces to
D(z=—o0)=j{y*—ye P cos(2A81)} 31)

where y* is the conjugate of ¢, as given in (17). Equation
(31) gives the value of the reverse coupling or directivity
of the coupler. The first two terms on the right-hand side
of (19) describe the effect of internal coupling in the initial
curved section. The magnitudes of the actual fields /| and
i,, in the third section and at z=oo0, are obtained from
(27) and (28) and found to be equal to

li;(c0)| =cos(ABI)—2¢sin(ABI) (32)
|iy(00)| =sin(ABI)+2¢pcos(ABI). (33)

These equations will be used to evaluate the coupling
length of the straight section, the length corrections due to
the end effect of the curved sections and hence the cor-
rected length of the coupler, as will be seen in the next
section.

CouPLING LENGTH CALCULATION OF A 3-dB
COUPLER

IIIL.

As is well known, the coupled system supports two
modes of two different phase velocities, and hence they
interfere with each other constructively or destructively.
As a result of this interference power will be transferred
from one line to the other continuously. The beat length
over which complete power transfer takes place is given
by

ki

L= m . (34)

In a distance %L the amplitudes in the two lines be-
come proportional to cos (7/4) and sin (w/4), ic., half
the power is in each line. The (uncorrected) length for a
3-dB coupler is accordingly

T
Ly gp= ZA—,B . (35)
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Fig. 4. Equivalent description for the 3-dB coupler showing the end
effect of the curved sections.

By imposing the design requirement on #(z) and i,(z)
of Section 3, at z= oo, which is equal amplitudes of i,(c0)
and i,(c0) in order to achieve a 3-dB coupler, we obtain
the length corrections due to the end effect of the curved
section. Using (32) and (33) and applying the condition of
equal field amplitudes at z=c0 we get

cos(ABI) —2¢sin(ABI)=sin(ABI) +2¢cos(ABI)
which reduces to

7
tan( = A,Bl) =2¢ (36)
correct to the first order of the small quantity AS. But the
length / of the straight section can be expressed as

I=Ly4p—~L, (37)

where L, 45 is the uncorrected 3-dB length of the coupler
and L_ is the length correction due to the curved sections.
Fig. 4 illustrates an equivalent description for the 3-dB
coupler showing the end effect of the curved sections. By
substituting (35) and (37) in (36) we obtain

1/2
Lc=6l+61’=i—¢= u (38)
B VZhe

where 8/ and 8/" represent the correction at the two ends
of the coupler. Because of the symmetry of the coupler 8/
and 4§/’ are equal.

1V. NUMERICAL EXAMPLE

As a numerical example of these results, consider the
design of a 3-dB directional coupler exactly similar to that
in Fig. 2. The excited guide is assumed to support a TE
even mode whose propagation characteristics are governed

by [8]
h?+p?=ki(e,— 1)

tan(%pa)=h/p. 39)

For a teflon guide of width 2.54 mm and ¢,=2.2 operat-
ing at a frequency of 94 GHz the values of 4, p, and §; are
found to be, respectively, equal to 19.6, 8.98, and 27.8
cm™!. For ¢=0.2 (corresponding to a 25-mm radius of
curvature) and a spacing of d,=1 mm the 3-dB corrected
length is found to be 7.5 cm. Because we considered this
length excessive we reduced the spacing to 0.5 mm which
gives a corrected length equal to 2.4 cm, a more suitable
value for the coupler length. The effect of curvature on
the corrected length of the coupler is found to be small. In
Fig. 5 we present the dependence of the output field
amplitude, at z=o00 and on both lines of Section 3, on
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Fig. 5. Frequency dependence of coupling for 3 dB at 94 GHz.
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Fig. 6. Effect of line width and dielectric constant on coupling,
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Fig. 7. Bandwidth versus spacing,.

frequency. The actual fields are equal at the central

frequency f, and have a value of 1/V2 so that the sum of
the squares is equal to 1. Below and beyond f,, the squares
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Fig. 8. Reflection coefficient versus frequency.
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Fig. 9. Directivity versus frequency.

of the fields, |#,(c0)|> and |i,(00)|?, still add to 1 and this
is to be expected because of the conservation of energy. In
addition, we can see also the dependence of the flatness of
the coupler response on frequency as well as the effect of
spacing on the flatness of the coupler response. The
bandwidth of the coupler has been found to be inversely
proportional to the spacing. This relation is clearly il-
lustrated in Figs. 6 and 7. In the same way other second
order effects have been examined and were found to
affect the bandwidth of the coupler so that the same effect
of 0.5-mm spacing and ¢,=2.2 could be achieved by
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0.8-mm spacing and ¢,=1.8 with /=2.5 cm in both cases.
Moreover, it seems to be the case that the same effect
could be achieved also by varying the breadth of the line
as well as the spacing, keeping ¢, and / at fixed values.
Finally Figs. 8 and 9 show the dependence of the magni-
tudes of the reflection coefficient and directivity on
frequency.

V. CONCLUSIONS

Approximate expressions have been derived for the
coupling of degenerate modes on curved, single-mode
dielectric slab waveguides. As illustrated by the example,
the curvature has negligible effect on the reflection coeffi-
cient and the directivity of the coupler. Moreover, it has
been shown that despite all approximations in the calcula-
tions, the fields on both lines are always in quadrature.
We showed also that there are substantial second-order
effects which affect the bandwidth of the coupler, and, at
least in part, increasing the coupling seems to increase the
bandwidth. Finally, we found that the same effect on the
bandwidth of tight coupling at 0.5-mm spacing can also
be achieved by decreasing the value of ¢, and increasing
the spacing.
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